Search "+Peter Norvig +Automated machine learning +Class imbalance problem +Travelling salesman problem +Machine learning -Andrew Ng +Carlos Guestrin +Class imbalance +Poker +Python +Machine learning for physical sciences +Recommender system +scikit-learn -Lexical feature selection"
Pages related to:
- Peter Norvig
- Automated machine learning
- Class imbalance problem
- Travelling salesman problem
- Machine learning
- Carlos Guestrin
- Class imbalance
- Poker
- Python
- Machine learning for physical sciences
- Recommender system
- scikit-learn
but not related to:
Positive matches
- 0.037 + - Netflix prize
- 0.029 + - Paradox
- 0.026 + - Decision tree
- 0.026 + - Gradient descent
- 0.022 + - Probability
- 0.017 + - tfidf
- 0.016 + - Pajek
- 0.015 + - Random forest
- 0.015 + - IPython notebook
- 0.014 + - Python/Modules
- 0.014 + - Jupyter/notebook
- 0.013 + - skorch
- 0.013 + - Boosting (machine learning)
- 0.013 + - Future of work
- 0.012 + - Probability, Paradox, and the Reasonable Person Principle
- 0.011 + - PyTorch
- 0.011 + - Tim Hopper
- 0.009 + - Privacy and Deanonymization
- 0.009 + - Learning
- 0.009 + - Machine learning for healthcare
Negative matches
- 0.034 + - Deep learning
- 0.026 + - Data analysis
- 0.017 + - Natural language processing
- 0.016 + - Pointwise mutual information
- 0.015 + - Text analysis
- 0.007 + - tf-idf
- 0.006 + - NLP
- 0.004 + - Biomedical natural language processing
- 0.002 + - spaCy
- 0.002 + - NLTK
- 0.002 + - Gensim
- 0.002 + - StanfordNLP
- 0.002 + - Word segmentation
- 0.002 + - Recurrent neural network
- 0.001 + - fastText
- 0.001 + - Sentence embedding
- 0.001 + - BookNLP
- 0.001 + - Dialog act
- 0.001 + - Sentiment analysis
- 0.001 + - Latent Dirichlet allocation