Search "+Peter Norvig +Automated machine learning +Class imbalance problem +Travelling salesman problem -Probability, Paradox, and the Reasonable Person Principle +Cross validation +Cluster analysis +Machine learning +Machine learning for healthcare +tf-idf +Boosting (machine learning) +Gensim +Gradient descent -Text analysis"
Pages related to:
- Peter Norvig
- Automated machine learning
- Class imbalance problem
- Travelling salesman problem
- Cross validation
- Cluster analysis
- Machine learning
- Machine learning for healthcare
- tf-idf
- Boosting (machine learning)
- Gensim
- Gradient descent
but not related to:
Positive matches
- 0.132 + - Class imbalance
- 0.045 + - Neural network
- 0.037 + - word2vec
- 0.031 + - tfidf
- 0.029 + - Recommender system
- 0.027 + - Neuron
- 0.027 + - scikit-learn
- 0.026 + - Data clustering
- 0.025 + - Ulrike von Luxburg
- 0.022 + - Pointwise mutual information
- 0.020 + - Yoav Freund
- 0.020 + - Ron Meir
- 0.019 + - Rob Schapire
- 0.017 + - Learning
- 0.014 + - IPython notebook
- 0.013 + - NLTK
- 0.013 + - Regular expression
- 0.013 + - Jupyter/notebook
- 0.012 + - Poker
- 0.012 + - Future of work
Negative matches
- 0.033 + - Data analysis
- 0.025 + - Science
- 0.011 + - Interdisciplinary research
- 0.007 + - Industry-Academic Partnership
- 0.005 + - Lexical feature selection
- 0.003 + - Science policy
- 0.001 + - Collaborative software
- 0.001 + - Policy
- 0.001 + - Software engineering in research
- 0.001 + - fastText
- 0.001 + - Kyunghyun Cho
- 0.001 + - StanfordNLP
- 0.001 + - String metric
- 0.001 + - Latent Dirichlet allocation
- 0.001 + - Sentiment analysis
- 0.001 + - KoNLPy
- 0.001 + - BookNLP
- 0.001 + - Topic modeling
- 0.000 + - Gibbs' inequality
- 0.000 + - Word embedding