Search "+Peter Norvig +Automated machine learning +Class imbalance problem +Travelling salesman problem -Probability, Paradox, and the Reasonable Person Principle +Cross validation +Cluster analysis +Machine learning +Machine learning for healthcare +tf-idf +Boosting (machine learning) +IPython notebook +NLTK +Learning +Gensim -Natural language processing"
Pages related to:
- Peter Norvig
- Automated machine learning
- Class imbalance problem
- Travelling salesman problem
- Cross validation
- Cluster analysis
- Machine learning
- Machine learning for healthcare
- tf-idf
- Boosting (machine learning)
- IPython notebook
- NLTK
- Learning
- Gensim
but not related to:
Positive matches
- 0.115 + - Class imbalance
- 0.049 + - tfidf
- 0.034 + - word2vec
- 0.033 + - Lexical feature selection
- 0.025 + - Recommender system
- 0.025 + - Gradient descent
- 0.024 + - Text analysis
- 0.022 + - Data clustering
- 0.022 + - Ulrike von Luxburg
- 0.021 + - Pointwise mutual information
- 0.021 + - scikit-learn
- 0.020 + - Jupyter/notebook
- 0.019 + - Deep learning
- 0.017 + - Ron Meir
- 0.017 + - Poker
- 0.016 + - How to study
- 0.016 + - Yoav Freund
- 0.016 + - Michael Ramscar
- 0.016 + - Rob Schapire
- 0.013 + - SSH tunneling
Negative matches
- 0.017 + - CNN
- 0.004 + - Residual Learning
- 0.002 + - fastText
- 0.002 + - String metric
- 0.002 + - KenLM
- 0.002 + - Kyunghyun Cho
- 0.002 + - Word segmentation
- 0.002 + - BERT
- 0.002 + - Latent Dirichlet allocation
- 0.002 + - Dialog act
- 0.002 + - BookNLP
- 0.002 + - Word embedding
- 0.002 + - Christopher D. Manning
- 0.002 + - KoNLPy
- 0.002 + - Topic modeling
- 0.002 + - Probability
- 0.002 + - Sentence embedding
- 0.002 + - Long short-term memory
- 0.002 + - Sentiment analysis
- 0.001 + - Topic model