Search "+Peter Norvig +Automated machine learning +Class imbalance problem +Travelling salesman problem -Probability, Paradox, and the Reasonable Person Principle +Cross validation +Cluster analysis +Machine learning +Machine learning for healthcare +tf-idf +Boosting (machine learning) +IPython notebook +Pointwise mutual information +NLTK +Rob Schapire -Gensim"
Pages related to:
- Peter Norvig
- Automated machine learning
- Class imbalance problem
- Travelling salesman problem
- Cross validation
- Cluster analysis
- Machine learning
- Machine learning for healthcare
- tf-idf
- Boosting (machine learning)
- IPython notebook
- Pointwise mutual information
- NLTK
- Rob Schapire
but not related to:
Positive matches
- 0.115 + - Class imbalance
- 0.058 + - Text analysis
- 0.050 + - Lexical feature selection
- 0.035 + - Information theory
- 0.034 + - Natural language processing
- 0.025 + - Gradient descent
- 0.024 + - Recommender system
- 0.022 + - Data clustering
- 0.022 + - Ulrike von Luxburg
- 0.021 + - scikit-learn
- 0.021 + - Jupyter/notebook
- 0.017 + - Poker
- 0.017 + - Ron Meir
- 0.016 + - Yoav Freund
- 0.015 + - Learning
- 0.013 + - SSH tunneling
- 0.013 + - Regular expression
- 0.013 + - Future of work
- 0.012 + - Python
- 0.012 + - IPython
Negative matches
- 0.030 + - word2vec
- 0.005 + - Graph embedding
- 0.004 + - sense2vec
- 0.002 + - Probability
- 0.002 + - Hierarchical softmax
- 0.002 + - wiki2vec
- 0.001 + - Clinical concept embedding
- 0.001 + - Softmax function
- 0.001 + - Network geometry
- 0.001 + - Paper/Levy2014
- 0.001 + - Paper/Levy2014a
- 0.001 + - Gender bias
- 0.001 + - Skip-gram
- 0.001 + - Omer Levy
- 0.001 + - GloVe
- 0.000 + - Embedded topic model
- 0.000 + - Tomas Mikolov
- 0.000 + - Continuous embedding
- 0.000 + - Paper
- 0.000 + - Sentence embedding