Search "+Peter Norvig +Automated machine learning +Class imbalance problem +Travelling salesman problem -Probability, Paradox, and the Reasonable Person Principle +Cross validation +Cluster analysis +Machine learning +Machine learning for healthcare +tf-idf +Boosting (machine learning) +Learning +Gensim +Gradient descent -Lexical feature selection"
Pages related to:
- Peter Norvig
- Automated machine learning
- Class imbalance problem
- Travelling salesman problem
- Cross validation
- Cluster analysis
- Machine learning
- Machine learning for healthcare
- tf-idf
- Boosting (machine learning)
- Learning
- Gensim
- Gradient descent
but not related to:
Positive matches
- 0.126 + - Class imbalance
- 0.037 + - Neural network
- 0.036 + - word2vec
- 0.034 + - Neuron
- 0.032 + - tfidf
- 0.030 + - Recommender system
- 0.024 + - Deep learning
- 0.024 + - Ulrike von Luxburg
- 0.024 + - Data clustering
- 0.024 + - scikit-learn
- 0.018 + - Ron Meir
- 0.018 + - Yoav Freund
- 0.018 + - Rob Schapire
- 0.017 + - How to study
- 0.017 + - Michael Ramscar
- 0.017 + - Text analysis
- 0.015 + - Privacy and Deanonymization
- 0.012 + - NLTK
- 0.012 + - Jupyter/notebook
- 0.011 + - Poker
Negative matches
- 0.021 + - Data analysis
- 0.011 + - Natural language processing
- 0.005 + - Biomedical natural language processing
- 0.004 + - NLP
- 0.003 + - CNN
- 0.003 + - StanfordNLP
- 0.002 + - BookNLP
- 0.001 + - String metric
- 0.001 + - Word segmentation
- 0.001 + - scispaCy
- 0.001 + - KenLM
- 0.001 + - Latent Dirichlet allocation
- 0.001 + - KoNLPy
- 0.001 + - fastText
- 0.001 + - Sentiment analysis
- 0.001 + - Dialog act
- 0.001 + - David Feldman
- 0.001 + - Information Theory, Inference, and Learning Algorithms
- 0.001 + - Convolutional neural network
- 0.001 + - spaCy