Search "+Peter Norvig +Automated machine learning +Class imbalance problem +Travelling salesman problem -Probability, Paradox, and the Reasonable Person Principle +Cross validation +Cluster analysis +Machine learning +Machine learning for healthcare +tf-idf +Boosting (machine learning) +Learning +Gensim +IPython -Text analysis"
Pages related to:
- Peter Norvig
- Automated machine learning
- Class imbalance problem
- Travelling salesman problem
- Cross validation
- Cluster analysis
- Machine learning
- Machine learning for healthcare
- tf-idf
- Boosting (machine learning)
- Learning
- Gensim
- IPython
but not related to:
Positive matches
- 0.125 + - Class imbalance
- 0.037 + - word2vec
- 0.033 + - IPython notebook
- 0.033 + - tfidf
- 0.032 + - Recommender system
- 0.030 + - Gradient descent
- 0.027 + - Python/Modules
- 0.025 + - Python
- 0.024 + - scikit-learn
- 0.024 + - Data clustering
- 0.024 + - Ulrike von Luxburg
- 0.023 + - Deep learning
- 0.019 + - Pointwise mutual information
- 0.018 + - Yoav Freund
- 0.018 + - Ron Meir
- 0.018 + - Rob Schapire
- 0.017 + - How to study
- 0.017 + - Michael Ramscar
- 0.015 + - Privacy and Deanonymization
- 0.015 + - Poker
Negative matches
- 0.030 + - Data analysis
- 0.023 + - Science
- 0.010 + - Lexical feature selection
- 0.009 + - Interdisciplinary research
- 0.007 + - Industry-Academic Partnership
- 0.002 + - Science policy
- 0.001 + - Collaborative software
- 0.001 + - Policy
- 0.001 + - Software engineering in research
- 0.001 + - Kyunghyun Cho
- 0.001 + - Dialog act
- 0.001 + - Word segmentation
- 0.001 + - BookNLP
- 0.001 + - fastText
- 0.001 + - KenLM
- 0.001 + - Latent Dirichlet allocation
- 0.001 + - Sentence embedding
- 0.001 + - Home
- 0.001 + - Sentiment analysis
- 0.001 + - Christopher D. Manning