Search "+Peter Norvig +Automated machine learning +Class imbalance problem +Travelling salesman problem -Probability, Paradox, and the Reasonable Person Principle +Cross validation +Cluster analysis +Machine learning +Machine learning for healthcare -Data clustering +Gradient descent -EM algorithm +scikit-learn +tf-idf +NLTK -Gensim"
Pages related to:
- Peter Norvig
- Automated machine learning
- Class imbalance problem
- Travelling salesman problem
- Cross validation
- Cluster analysis
- Machine learning
- Machine learning for healthcare
- Gradient descent
- scikit-learn
- tf-idf
- NLTK
but not related to:
Positive matches
- 0.109 + - Class imbalance
- 0.034 + - Natural language processing
- 0.033 + - Neural network
- 0.029 + - Neuron
- 0.025 + - Text analysis
- 0.025 + - tfidf
- 0.024 + - Recommender system
- 0.022 + - Ulrike von Luxburg
- 0.022 + - Lexical feature selection
- 0.021 + - Pointwise mutual information
- 0.021 + - Decision tree
- 0.016 + - Random forest
- 0.015 + - PyTorch
- 0.013 + - Python/Modules
- 0.012 + - Learning
- 0.012 + - IPython notebook
- 0.011 + - Future of work
- 0.011 + - Privacy and Deanonymization
- 0.011 + - skorch
- 0.010 + - Regular expression
Negative matches
- 0.028 + - word2vec
- 0.005 + - sense2vec
- 0.005 + - Graph embedding
- 0.003 + - wiki2vec
- 0.003 + - Probability
- 0.002 + - Hierarchical softmax
- 0.001 + - Clinical concept embedding
- 0.001 + - Paper/Hamilton2016
- 0.001 + - Paper/Levy2014
- 0.001 + - Softmax function
- 0.001 + - Network geometry
- 0.001 + - Paper/Perozzi2014
- 0.001 + - Omer Levy
- 0.001 + - Gender bias
- 0.001 + - Jure Leskovec
- 0.001 + - Skip-gram
- 0.001 + - Yoav Goldberg
- 0.000 + - GloVe
- 0.000 + - Chris McCormick
- 0.000 + - Embedded topic model