Search "+Peter Norvig +Automated machine learning +Class imbalance problem +Travelling salesman problem -Probability, Paradox, and the Reasonable Person Principle +Cross validation +Cluster analysis +Machine learning -Poker +Jupyter/notebook +Regex +scikit-learn +tfidf +Lexical feature selection -Artemy Kolchinsky -Text analysis"
Pages related to:
- Peter Norvig
- Automated machine learning
- Class imbalance problem
- Travelling salesman problem
- Cross validation
- Cluster analysis
- Machine learning
- Jupyter/notebook
- Regex
- scikit-learn
- tfidf
- Lexical feature selection
but not related to:
Positive matches
- 0.098 + - Class imbalance
- 0.085 + - tf-idf
- 0.069 + - Regular expression
- 0.022 + - Ulrike von Luxburg
- 0.022 + - Data clustering
- 0.022 + - Decision tree
- 0.022 + - IPython notebook
- 0.021 + - Gradient descent
- 0.016 + - Recommender system
- 0.015 + - Natural language processing
- 0.015 + - Pointwise mutual information
- 0.014 + - Random forest
- 0.013 + - Python/Modules
- 0.013 + - IPython
- 0.013 + - Boosting (machine learning)
- 0.013 + - Python
- 0.012 + - Jupyter
- 0.012 + - skorch
- 0.010 + - Tim Hopper
- 0.010 + - Future of work
Negative matches
- 0.021 + - Science
- 0.012 + - Data analysis
- 0.009 + - Interdisciplinary research
- 0.007 + - Industry-Academic Partnership
- 0.003 + - Probability
- 0.002 + - Science policy
- 0.001 + - Collaborative software
- 0.001 + - Policy
- 0.001 + - Software engineering in research
- 0.001 + - Sentiment analysis
- 0.001 + - String metric
- 0.001 + - fastText
- 0.001 + - Word segmentation
- 0.001 + - Home
- 0.000 + - Gibbs' inequality
- 0.000 + - Sentence embedding
- 0.000 + - Latent Dirichlet allocation