Laplacian, Spectral graph theory -- Supra-Laplacian matrix
The basic Laplacian matrix (combinatorial Laplacian matrix) is defined as:
$$ L = D - A $$
or
$$ L_{i,j}:= \begin{cases} \deg(v_i) & \mbox{if}\ i = j \\ -1 & \mbox{if}\ i \neq j\ \mbox{and}\ v_i \mbox{ is adjacent to } v_j \\ 0 & \mbox{otherwise} \end{cases} $$
Incoming Links #
Related Articles (Article 0) #
Suggested Pages #
- 0.601 Caenorhabditis elegans
- 0.282 C. elegans
- 0.025 Eigenvalues and eigenvectors
- 0.018 László Lovász
- 0.016 Steven Kay Butler
- 0.012 Network science
- 0.012 Network datasets
- 0.006 Fan Chung
- 0.005 Adjacency matrix
- 0.003 Innovation
- More suggestions...