Laplacian, Spectral graph theory -- Supra-Laplacian matrix
The basic Laplacian matrix (combinatorial Laplacian matrix) is defined as:
$$ L = D - A $$
or
$$ L_{i,j}:= \begin{cases} \deg(v_i) & \mbox{if}\ i = j \\ -1 & \mbox{if}\ i \neq j\ \mbox{and}\ v_i \mbox{ is adjacent to } v_j \\ 0 & \mbox{otherwise} \end{cases} $$
Incoming Links #
Related Articles (Article 0) #
Suggested Pages #
- 0.551 Caenorhabditis elegans
- 0.260 C. elegans
- 0.076 Eigenvalues and eigenvectors
- 0.029 Network science
- 0.025 Steven Kay Butler
- 0.020 Adjacency matrix
- 0.019 Fan Chung
- 0.011 Complex systems
- 0.005 László Lovász
- 0.002 Network datasets
- More suggestions...