Recommendation using Machine learning algorithms.
Can we incorporate serendipity in the algorithm[^1]? (more on google scholar page: http://scholar.google.com/scholar?hl=en&q=serendipity+recommendation&btnG=&as_sdt=1%2C15&as_sdtp)
Table of Contents
Topics #
Articles #
- http://engineering.foursquare.com/2011/03/22/building-a-recommendation-engine-foursquare-style/
- Recommender systems, Part 1: Introduction to approaches and algorithms
References #
- Introduction to Recommender Systems Handbook
- Recommender Systems
- Navigability of Recommendation Networks
temporal #
- Time weight collaborative filtering - let's put more emphasis on recent items.
- Collaborative filtering with temporal dynamics
[^1]: Zhang, Yuan Cao; Séaghdha, Diarmuid Ó; Quercia, Daniele; Jambor, Tamas (2012). Auralist. pp. 13. doi:10.1145/2124295.2124300.
Incoming Links #
Related Articles (Article 0) #
Suggested Pages #
- 0.176 Class imbalance
- 0.093 Gradient descent
- 0.078 Class imbalance problem
- 0.032 Future of work
- 0.031 Learning
- 0.028 Regular expression
- 0.025 Training dataset
- 0.025 Naive Bayes classifier
- 0.025 GraphLab
- 0.025 Javascript
- More suggestions...